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Abstract—Beyond implementation correctness of a distributed
system, it is equally important to understand exactly what users
should expect to see from that system. Even if the system itself
works as designed, insufficient understanding of its user-observable
semantics can cause bugs in its dependencies. By focusing a
formal specification effort on precisely defining the expected
user-observable behaviors of the Azure Cosmos DB service at
Microsoft, we were able to write a formal specification of the
database that was significantly smaller and conceptually simpler
than any other specification of Cosmos DB, while representing
a wider range of valid user-observable behaviors than existing
more detailed specifications. Many of the additional behaviors
we documented were previously poorly understood outside of
the Cosmos DB development team, even informally, leading to
data consistency errors in Microsoft products that depend on it.
Using this specification, we were able to raise two key issues in
Cosmos DB’s public-facing documentation, which have since been
addressed. We were also able to offer a fundamental solution to
a previous high-impact outage within another Azure service that
depends on Cosmos DB.

Index Terms—cloud computing, formal methods, model check-
ing, documentation

I. INTRODUCTION

Consistency guarantees for distributed databases are noto-
riously hard to understand. Not only can distributed systems
inherently behave in unexpected and counter-intuitive ways
due to internal concurrency and failures, but they can also
lull their users into a false sense of functional correctness:
most of the time, users of a distributed database will witness
a much simpler and more consistent set of behaviors than
what is actually possible. Only timeouts, fail-overs, or other
rare events will expose the true set of behaviors a user
might witness [1]. Testing for these scenarios is difficult at
best: reproducing them reliably requires controlling complex
concurrency factors, latency variations, and network behaviors.
Even just producing usable documentation for developers is
fundamentally challenging [2], [3], [4], and explaining these
subtle consistency issues via documentation comes as an
additional burden to distributed system developers and technical
writers alike. Formal methods have long been applied to the
design of distributed systems, including in industry [5], [6], [7],
[8], but these are years-long high-effort projects that focus on
implementation correctness, not explaining the system to users.
Rather than focus on this difficult task, we address a simpler
and more fundamental question: ignoring the implementation,

what kind of behavior should a client be able to witness while
interacting with a service?

We use TLA+ to answer this simpler question for Cosmos
DB, a planet-scale key-value store. In practice, Cosmos DB
offers a rich interface featuring multiple query APIs, and
has complex operational behaviors involving georeplication
and partitioning of data. As our focus is on data consistency
from a client perspective, we model only the core read and
write operations underlying the system’s semantics relating
to their 5 configurable consistency levels. We show that this
minimal client-focused specification of a large-scale service
offers important design- and documentation-level insights,
while keeping buy-in cost low.

We document the 2 person-month development process of our
specification, which consists of iterative prototyping using the
public documentation [9], feedback from author 2, a Cosmos
DB developer, and the specification and model checking of
a collection of formal properties based on our understanding.
Aside from the specification itself, we discuss a pair of key
issues it helped us discover within Cosmos DB’s documentation,
and how both have since been addressed. We also use our
specification to explain the previously-unclear root cause of a
28-day high-priority outage within Microsoft Azure.

We describe the following results: (1) a concise (390
LOC) client-focused specification of Cosmos DB, a large-
scale distributed system; (2) a pair of key documentation bugs
we found by developing our specification — statements in
Cosmos DB’s public documentation [9] that have now been
corrected; and (3) using our specification, a novel and concise
mechanized explanation of a high-severity Cosmos DB-related
outage within Azure that took 28 days to identify and mitigate.

Beyond our work so far, we expect our specification to be
useful in future design work as Cosmos DB’s implementation
evolves, aided by its ability to precisely and abstractly state a
client’s expectations of system behavior. Services depending
on Cosmos DB may also benefit from incorporating our work
into TLA+ specifications of their own processes, in which case
our work may be used to prevent future outages similar to the
one we describe in this paper.

II. BACKGROUND

Our work uses the TLA+ specification language [10], which
can be used to describe state machines using set-theoretic
constructs and temporal logic. Models written in TLA+ have no



direct correspondence to implementations, with users focusing
instead on analyzing design decisions and verifying model-level
correctness properties. This philosophy allows specification
writers to leave out irrelevant details and focus on expressing
a specification’s core semantics as simply as possible.

In addition to plain TLA+, model developers can also write
models in PlusCal [11], a high-level imperative language that
is more like contemporary programming languages. We use
PlusCal to model the incident discussed in Section IV-C2,
which demonstrates how to use our existing TLA+ definitions
from PlusCal.

It is possible to check model properties using the explicit-
state model checker TLC [12], [13], the symbolic model
checker Apalache [14], and the manual proof assistant
TLAPS [15]. In this work, we relied on the TLC model checker
to analyze our specification.

As well as model checking temporal properties, it is also
possible to express and check refinements [16] in TLA+. A
refinement proves that one specification implements another
– meaning that one specification exhibits every behavior that
another specification exhibits, given an appropriate translation
between the two specifications’ state spaces. We use this tech-
nique to show that our new specification produces a superset
of the behaviors produced by existing TLA+ specifications of
Cosmos DB.

III. A SIMPLE MODEL OF COSMOS DB

To fully illustrate our claim to simplicity, this section
describes our full formalization of Cosmos DB’s semantics
in a few pages, including most of the core TLA+ definitions
in-text. While simple, our specification aggregates the expected
observable behavior of client read and write operations at
arbitrary scale without explicitly specifying details like replicas,
server lifecycle, real time, or network traffic. Our specification
abstractly represents an arbitrary number of clients communicat-
ing with an arbitrary number of Cosmos DB servers, including
multiple regions, and considers all failure scenarios for which
Cosmos DB is designed. The failure scenarios we consider
include arbitrary machine and data center failures, and arbitrary
loss and restoration of communication between any machines
at any point.

Note that we specify only read and write operations. We
consider the query APIs provided on top of Cosmos DB out
of scope, since they must internally use the raw read/write
mechanism that we do cover. We do not consider multi-region
writes, which generally offer only weak consistency guarantees.
We also leave out Cosmos DB’s transaction mechanisms,
limiting our work so far to arbitrary sets of concurrent single
reads and writes at arbitrary consistency levels. We leave
transactions as future work.

Our specification process was based on iterative discussion
with author 2, a principal engineer working on the Cos-
mos DB implementation. We followed existing user-facing
documentation, asked for feedback, learned more about the
realities of Cosmos DB’s design, and incorporated that new
knowledge into our specification. We repeated this feedback
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Fig. 1. Hierarchy of consistency levels in Cosmos DB, with strongest at the
top and weakest guarantees at the bottom.

loop until we found no more corrections. Instead, our model
began to predict counter-intuitive but possible behaviors of
the real system. See Subsection IV-D for in-depth analysis of
such behaviors. See https://github.com/tlaplus/azure-cosmos-
tla/tree/master/simple-model for the full TLA+definitions.

A. Consistency Levels

Cosmos DB offers 5 consistency levels that affect read
and write behavior. A system administrator must configure all
writes to follow a single consistency level per Cosmos DB
deployment. Read operations may either match the configured
write consistency level or weaken it according to the hierarchy
defined in Figure 1. We discuss high-level prose descriptions
of these consistency levels, which we complement with precise
TLA+ descriptions later on.

Strong consistency. Reads and writes are linearizable [17],
as long as the operation does not fail. See Section IV-D for
possible behaviors given failures.

Bounded staleness. Writes older than a given time bound
are durable and consistently readable, whereas writes younger
than the given bound are not. The time bound is defined two
ways: a bound in wall-clock time, and a maximum bound on
the number of eventually-consistent writes allowed at once.
If the bounds are in danger of being exceeded, additional
writes will be refused in order to allow all replicas to catch up.
For modeling simplicity, we ignore the wall-clock temporal
aspect of this mode’s semantics, and consider only operation
count. While modeling real time is possible in TLA+, we use
non-determinism to capture conceptually equivalent high-level
behaviors without including a clock in our model’s state space.

Session consistency. Reads and writes are tagged with
session tokens. Operations with the same session token are lin-
earizable relative to one another, but no guarantees are provided
across different session tokens. Session consistency writes are
not guaranteed durable, and tokens may be invalidated by data
loss.

Consistent prefix. Reads are monotonic: a client may only
read newer values than it has already read. Section IV-A
describes how we used model checking to determine that this
is ultimately equivalent to eventual consistency.

Eventual consistency. This level offers no ordering guaran-
tees, but does provide a notion of eventual convergence over
an arbitrary period of time1.

1We mean logical time, as our specification does not consider wall-clock
time.

https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model
https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model


B. Data Definitions

Our specification of Cosmos DB is defined to have 4 state
variables, and allows them to evolve over time via some
simple actions. Each variable relates to a specific aspect of the
system being modeled. By defining actions that are allowed
to non-deterministically alter these variables over time, these
definitions are sufficient to represent the full range of Cosmos
DB’s expected behavior given an arbitrary deployment and
scale.

log. The log is a sequence of writes, represented as key-
value pairs. For example, [key 7→ k1, value 7→ v1] pairs
key k1 with value v1. The sequence lists all writes that are
stored anywhere in Cosmos DB’s implementation, irrespective
of replication or durability.

readIndex. The readIndex marks either a position in the
log or 0. For any element of the log, if its index is less
than or equal to readIndex, then it is replicated universally
across servers within the current Cosmos DB deployment.
Representing eventually-complete propagation of writes, the
log prefix defined by readIndex behaves identically to a
single key-value store.

commitIndex. The “commit index” marks a position in
the log or 0. For any element of the log, if its index
is less than or equal to commitIndex, then it is repli-
cated at a global majority of replicas, and is therefore
durable due to consensus. It follows from this definition that
readIndex ≤ commitIndex must always hold.

epoch. The epoch is a monotonically increasing counter
of fail-overs. If epoch remains constant, fail-over behavior
such as data loss may not be observed. If it increases, some
data loss may be observed at the point of increase.

The specification has six constants: Keys and Values,
which are the sets of keys and values respectively. These
sets can be redefined based on the use case — they can be
generalized to infinite sets like “all strings”, or restricted to a
small finite set of constant values in order to allow exhaustive
model checking. NoValue is a constant indicating the ab-
sence of a value. VersionBound and StalenessBound
are natural numbers that affect when writes are allowed.
WriteConsistencyLevel represents the currently con-
figured consistency level for write operations, one of the 5
consistency levels.

We chose to base our specification on a sequential log
because Cosmos DB, like any consensus-based system, de-
termines a total order in which clients should consider their
requests to have occurred. This is why many parts of our
specification, including several state variables, identify writes
by log index.

Building on these definitions, we can express our first two
fundamental actions.

IncreaseReadIndexAndOrCommitIndex
∆
=

∧ commitIndex ′ ∈ commitIndex . . Len(log)
∧ readIndex ′ ∈ readIndex . . commitIndex ′

∧ UNCHANGED ⟨log , epoch⟩

IncreaseReadIndexAndOrCommitIndex models the
concept of data replication, that is, readIndex and/or
commitIndex advancing. readIndex and commitIndex
may non-deterministically gain new values between
readIndex and commitIndex′, and commitIndex
and Len(log), respectively. Neither log nor epoch may
change. This ensures that both values may only grow,
that they never point beyond end of the log, and that
readIndex ≤ commitIndex remains true.

TruncateLog
∆
=

∃ i ∈ (commitIndex + 1) . . Len(log) :
∧ log ′ = SubSeq(log , 1, i − 1)
∧ epoch ′ = epoch + 1
∧ UNCHANGED ⟨readIndex , commitIndex ⟩

Log models the concept of data loss: if there exists any index
i such that commitIndex < i , then log may be truncated
non-deterministically such that its new length is i − 1. In-
progress operations may watch for changes in epoch’s value
to detect and respond to failures, meaning epoch acts as a
failure detector.

Because these actions may happen non-deterministically,
any combination of replication and fail-over may occur at any
time, interleaved with other actions. A short sequence of such
actions can represent a complex series of implementation-level
possibilities.

C. Write Operations

In Cosmos DB, write operations are not atomic. They may
sometimes appear atomic under certain configurations2, but
their underlying structure needs to be broken down into multiple
steps.

As a consequence of writes’ multi-step nature, we need to
record the state of in-progress writes. For portability, we don’t
require any particular state retention mechanism, as the specifics
might vary depending on how our core specification is used.
Instead, we break up the two conceptual stages of a Cosmos
DB write into re-usable parts that we describe individually. As
a result, these definitions are only complete when combined
appropriately, including for example additional UNCHANGED
declarations where needed. What we present here completely
encapsulates the core behavior of write operations, and we make
public specific usage examples alongside our specification.

WritesAccepted
∆
=

∧ Len(log)− readIndex < VersionBound
∧ ((WriteConsistencyLevel = BoundedStaleness) ⇒

Len(log)− commitIndex < StalenessBound)

1) Beginning a Write Operation: WritesAccepted deter-
mines whether a write may be attempted at all. It con-
strains writes based on two factors: VersionBound and

2For instance, a client performing only strongly consistent reads and strongly
consistent writes will never witness an in-progress write. Weaker consistency
levels do not provide any such guarantees, however. See Section IV-D for
specific examples.



StalenessBound. VersionBound is a global limit on
how many partially-replicated writes may exist in a Cosmos
DB instance at any one time. StalenessBound is a global
limit on how many non-durable writes may exist in a Cosmos
DB instance at any one time, used to enforce bounded staleness
consistency.

WriteInit(key , value)
∆
=

log ′ = Append(log , [key 7→ key , value 7→ value])

WriteInit defines the initial stage of any permitted write
operation, appending a new key-value pair to the log. This
means that at least one replica now holds the new key-value
pair. The lack of distinction between incomplete and complete
writes is intentional here: Cosmos DB replicas unconditionally
begin serving writes as soon as they accept them. The Cosmos
DB client libraries are the ones that enforce Cosmos DB’s
read semantics, and they may perform multiple read requests
against multiple replicas until they get a consistent answer that
can be returned to an end-user. Cosmos DB replicas require
no additional logic restricting which writes should be visible
to which read requests.

WriteInitToken
∆
=

[epoch 7→ epoch, checkpoint 7→ Len(log) + 1]

WriteInitToken defines a unique identifier, or token, with
which we can keep track of a write’s progress. This token
is structurally identical to a session token, the data used to
identify a client’s session at session consistency. Note that in
practice, these tokens represent the flow of a request from
client to server and back. We use this abstraction to concisely
summarize an otherwise complex mix of network semantics
and client-server interaction.

We have model-checked a uniqueness property for all session
tokens given up to 6 writes and any one failure event.

2) Completing a Write Operation: Once it has begun, a
write operation may complete at any time that it is allowed to.
An in-progress write may also non-deterministically fail at any
time, due to timeouts, spurious network failures, and so forth.

WriteCanSucceed(token)
∆
=

∧ SessionTokenIsValid(token)
∧ (WriteConsistencyLevel = StrongConsistency ⇒

∧ token.epoch = epoch
∧ token.checkpoint ≤ commitIndex )

Given a token identifying an in-progress write, WriteCan-
Succeed defines when the write is allowed to succeed. There
are 3 conditions for success.

First, a write may succeed if its token is valid, that is,
SessionTokenIsValid(token) is true. This will be the case if
token.checkpoint ≤ Len(log), and token.epoch =
epoch.

Second, writes must still be in the log. If data loss occurred
and the written data is gone, success cannot be claimed. This
condition also accounts for replacement, where log entries are

lost then written again with the same index. Since data loss
always increments epoch, rejecting writes from a different
epoch cleanly disallows writes interrupted by data loss events.

Lastly, if WriteConsistencyLevel is set to
StrongConsistency, then token.checkpoint
must be less than or equal to commitIndex. By the
semantics of commitIndex, this requirement means that
“all strongly consistent writes observed by a client must be
durable”.

D. Read Operations

We define read semantics for Cosmos DB as stateless, read-
only operators that describe the set of allowed read results
for any given read request. Unlike write operations, individual
read operations can be set to any consistency level that is
weaker than or equal to the configured write consistency. That
is why we define them as different operators, which makes
it possible to perform and compare all possible types of read
operation without changing the system’s state. We define the
read operation for each consistency level separately, but we
use a common underlying definition called GeneralRead to
avoid duplication.

GeneralRead(key , index , allowDirty)
∆
=

LET maxCandidateIndices
∆
= {i ∈ DOMAIN log :

∧ log [i ].key = key
∧ i ≤ index}

allIndices
∆
= {i ∈ DOMAIN log :

∧ allowDirty
∧ log [i ].key = key
∧ i > index}

IN {[logIndex 7→ i , value 7→ log [i ].value]
: i ∈ allIndices ∪ (

IF maxCandidateIndices ̸= {}
THEN {Max (maxCandidateIndices)}
ELSE {})} ∪

(IF maxCandidateIndices = {}
THEN {NotFoundReadResult}
ELSE {})

GeneralRead takes 3 parameters: key, whose value is being
read; index, a log index indicating the reader’s “point of
view” in the log; and allowDirty, which determines whether
the read operation should have exactly one result, or non-
deterministically many. All members of the resulting set will be
pairs of logIndex and value, which are resulting value and
its log index, respectively. logIndex allows read results to be
totally ordered, which is useful for both verifying correctness
properties, and for correctly describing session tokens.
index defines a prefix of the log, selecting all indices

i ≤ index. Within this prefix, GeneralRead will always
include the latest mapping from key to some value. If there
is no such mapping, GeneralRead returns the marker value
NotFoundReadResult. Additionally, if allowDirty is true,
then GeneralRead will also include values bound to key in log
entries with index i > index. This models non-deterministic



reads: it allows reading writes that are not durable, still in
progress, or simply arbitrarily more recent than index.

Note that each of the following read operations are only
valid for compatible values of WriteConsistencyLevel.
Figure 1 illustrates the intended hierarchy of consistency levels.

StrongConsistencyRead(key)
∆
=

GeneralRead(key , commitIndex , FALSE)

1) Strongly Consistent Reads: Strongly consistent reads
for any given key follow commitIndex, and return one
single consistent value in all cases. Aligning these reads with
commitIndex means that only durable writes may be read.

BoundedStalenessRead(key)
∆
=

GeneralRead(key , commitIndex , TRUE)

2) Bounded Staleness Reads: Bounded staleness reads
also follow commitIndex. Unlike strongly consistent reads,
bounded staleness reads may see arbitrary information be-
yond commitIndex. The span of log entries between
commitIndex and Len(log) represents the non-durable
reads allowed, which may be arbitrarily witnessed in addition
to durable data before commitIndex.

SessionConsistencyRead(token, key)
∆
=

IF ∨ epoch = token.epoch
∨ token = NoSessionToken

THEN LET sessionIndex
∆
= Max ({token.checkpoint ,

readIndex})
IN GeneralRead(key , sessionIndex , TRUE)

ELSE {})

3) Session Consistent Reads: Session consistent reads
operate using a session token which defines a position in
the log to read from: a checkpoint, and the epoch from
which the token originates.

The first check made during a session consistency read
is whether the session token is from the current epoch. If
the epochs differ, and the session token isn’t the placeholder
value NoSessionToken, then no reads are permitted. Session
consistency offers no durability guarantees: if data loss occurs,
it becomes impossible to guarantee that writes referenced by
a session token remain intact. Not all session tokens will be
invalidated on every data loss event in practice, but we have
yet to find a need for modeling the invalidation of only some
session tokens.

After checking the epoch, the checkpoint is combined
with readIndex. Since the readIndex indicates the log
prefix that has been replicated to every single replica in the
current Cosmos DB deployment, it would be unsound to have
a sessionIndex smaller than readIndex.

We set allowDirty to TRUE, meaning that a session
consistent read may arbitrarily read log entries beyond its
session token. This possibility represents clients’ ability to
non-deterministically witness the effects of other concurrent
sessions.

Note that the “empty” value, NoSessionToken, corresponds
to [epoch 7→ 0,checkpoint 7→ 0]. Its epoch of 0 makes
it incomparable to other session tokens, and its checkpoint of
0 places no constraint on the outcome of a session consistency
read.

UpdateTokenFromRead(origToken, read)
∆
= [

epoch 7→ epoch,
checkpoint 7→ Max ({origToken.checkpoint ,

read .logIndex})
]

Once a read is performed with a given token, a client must
update its session token. This is done with UpdateTokenFrom-
Read, which combines the log index from a read result with
the checkpoint of an existing session token. This combination
monotonically increases a client’s session token, ensuring that
each client may only witness increasingly recent information.

EventualConsistencyRead(key)
∆
=

GeneralRead(key , readIndex , TRUE)

4) Consistent Prefix and Eventual Consistency Reads: Con-
sistent prefix and eventual consistency being known equivalent,
as discussed in Section IV-A, they have identical definitions.
Their behavior is minimally constrained, requiring only that
values overwritten at or before readIndex cannot be read.

E. Validation

To validate that our specification exhibits behaviors of which
Cosmos DB’s implementation is capable, and in order to
ensure that we cover as wide a variety of these behaviors as
possible, we have leveraged a combination of model checking
correctness properties, model checking our specification’s
relationship with comparable specifications via refinement, and
manual expert review of behaviors implied by our specification.
This subsection focuses on the properties we checked, while
particularly interesting specific behaviors will be discussed
alongside our results in Section IV.

1) Correctness Properties: The correctness properties we
check are a collection of the ones listed in Cosmos DB’s
external documentation [9], properties derived from existing
TLA+ specifications of Cosmos DB [18] (which are also
referenced as authoritative by Cosmos DB’s documentation),
and properties inherent to our particular specification’s design.
To aid in our verification process, we extend our base behavior
specification with an auxiliary writeHistory state variable.
writeHistory provides a history of all attempted writes,
including which key, which value, a write token indicating at
which epoch and log index the write began, and a state that
will transition at most once from WriteInitState to either
WriteSucceededState or WriteFailedState.

Using this extended specification, we verify a total of 10
liveness properties and 14 safety properties across the 4 distinct
data consistency levels offered by Cosmos DB, excluding basic
type safety invariants. Our verification process is based on



model checking, using a combination of exhaustive state space
exploration of logs up to length 6, and depth-first random
simulation of execution traces exploring up to 100 steps.

PointsValid
∆
=

2[ ∧ readIndex ≤ commitIndex
∧ readIndex ≤ readIndex ′

∧ commitIndex ≤ commitIndex ′]vars

For example, PointsValid defines the relationship be-
tween readIndex and commitIndex: readIndex cannot
be beyond commitIndex, and they must increase mono-
tonically. For the sake of concision, we describe the other
properties via prose summary. The full set is available alongside
our complete specification at https://github.com/tlaplus/azure-
cosmos-tla/tree/master/simple-model.

Read your writes. For strong consistency and session
consistency with the same token, after any write, only the
written value or some later write may be read.

Read after write. It is related to read your writes, but at
a client scope rather than a global scope. It is not materially
different in our specification, since we abstract away commu-
nication in its entirety, but we check it as an alternate form of
read your writes for completeness.

Monotonic reads. For strong consistency and session
consistency with the same token, reads may only make visible
later writes, and will never return older data than they already
have.

Bounded staleness. Bounded staleness consistency should
never accept more than StalenessBound uncommitted
writes at once.

Session token lifetime. For any arbitrary session token that
is valid, it will either remain valid or become invalid, in which
case it will never become valid again.

readIndex as lower bound. No reads may return values
that have been overwritten by other operations within the log
prefix defined by readIndex.

Write completion. All writes eventually complete, either
with success or failure.

2) Linearizability: The strongest consistency property of-
fered by Cosmos DB is the linearizability [17], [19] of
write operations at the StrongConsistency consistency
level. Linearizability means that, for any operation on some
concurrent object (here, a key in Cosmos DB), we can
choose a point in time between the beginning and end of
that operation at which it has atomically occurred. For our
simple specification, that point is when commitIndex is
incremented. Due to our non-atomic modeling of writes,
this point will occur at some unspecified point in between
the beginning and end of a successful write, whenever In-
creaseReadIndexAndOrCommitIndex takes place. We wrote
a refinement specification CosmosDBLinearizability,
verifying that every behavior of our Cosmos DB specification
with strong consistency reads and writes corresponds to the
same series of atomic reads and writes applied to a TLA+

function.

3) Refining Existing Specifications: Cosmos DB already
has publicly available TLA+ specifications for some of its
behavior [18], so we used refinement to verify our new
specification does not disagree with existing specifications.
Our refinement was possible using a direct mapping between
states, and we provide the necessary definitions alongside our
specification in the file RefineGeneralModel.tla.

We found that our work offers a superset of previously-
specified behavior, despite the old specification including
concepts we do not explicitly deal with, representing individual
servers and network messages. Our specification’s behavior is
specifically a strict superset of the old one’s, because we noted
that the existing specifications made no attempt at modeling
data loss or relaxed reads.

4) Refining Read Consistency Levels: It is strongly hinted
in Cosmos DB’s public documentation [9] that different
consistency levels represent a hierarchy of possible behaviors,
with stronger consistency guarantees forming subsets of weaker
consistency guarantees. We used our specification to investigate
this property, and determined under what conditions the
implication made by Cosmos DB’s public documentation holds.

We found that, for the same configured write consistency,
different consistency reads form behavioral subsets directly
matching the documented hierarchy illustrated in Figure 1.
Keeping the write consistency level constant, each stronger
read consistency allows a subset of the behavior of each weaker
read consistency. Note that we consider all possible session
token choices together for session consistency.

Counter-intuitively, this relationship does not hold when
comparing write consistency levels. Consider that strong
consistency allows more non-durable writes than bounded
staleness, because bounded staleness fundamentally relies on
throttling writes to preserve its semantics, whereas strong
consistency does not. See Section IV-D3 for discussion.

IV. RESULTS

Beyond our specification itself, we showcase two key issues
it helped us raise with Cosmos DB’s documentation, both of
which have been addressed. We also present the previously-
unclear root cause of a 28-day high-priority outage within
Azure, alongside a collection of other properties of Cosmos
DB made explicit by our project.

While our specification itself does not need to reference the
underlying architecture of Cosmos DB, it is necessary to do
so when discussing the intuition behind our results. We begin
with a brief glossary of the relevant architectural details of
Cosmos DB.

Replicas. A Cosmos DB deployment is composed of a
number of replica servers (“replicas”), each of which maintains
an independent version of the database’s contents. All replicas
respond to load-balanced client requests. Cosmos DB’s client
libraries are responsible for retry logic.

Regions. A Cosmos DB deployment’s replicas are grouped
into regions based on physical proximity in order to manage
communication latency. Some operations require consensus
only within a single region (“local” consensus), and some

https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model
https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model


TABLE I
READ AND WRITE STRATEGIES AT DIFFERENT CONSISTENCY LEVELS,

TAKEN FROM PUBLIC COSMOS DB DOCUMENTATION [9].

Consistency Level Quorum Reads Quorum Writes
Strong Local Minority Global Majority
Bounded Staleness Local Minority Local Majority
Session Single Replica

(session token)
Local Majority

Consistent Prefix Single Replica Local Majority
Eventual Single Replica Local Majority

operations require consensus across regions (“global” consen-
sus). Table I lists the consensus requirements for read and
write operations at different consistency levels within Cosmos
DB. “Majority” means strictly more than 50%, and “minority”
means at least 50%.

Write region refers to a single region that is allowed to
process write operations. This is similar to the well-known
concept of a leader, but with regions instead of individual
replicas. If an entire region becomes unresponsive, it is possible
to fail-over between regions, similarly to the well-known
concept of leader re-election.

A. Consistent Prefix and Eventual Consistency Behave Equiv-
alently

During our work, we have discovered that eventual consis-
tency and consistent prefix in Cosmos DB behave identically
from the point of view of a client performing individual reads
and writes. We modeled and checked all properties of both
consistency levels, and we were unable to find any practical
distinction between the two modes for single reads and writes.
We also explicitly model checked that both consistencies
produce identical client views in all scenarios, and were able
to confirm our findings with the Cosmos DB team. As a result,
changes to Cosmos DB’s public documentation were published.
Below, we discuss the rationale that we developed in order to
explain this result.

Since eventual consistency is the least constraining option,
we will focus on whether consistent prefix could behave in
any way that is distinguishable from it. For context, consider
the original description of consistent prefix consistency below,
which has now been rewritten by the Azure documentation
team in response to our findings.

In consistent prefix option, updates that are returned
contain some prefix of all the updates, with no gaps.
Consistent prefix consistency level guarantees that reads
never see out-of-order writes.
If writes were performed in the order ⟨A,B,C⟩, then a
client sees either ⟨A,A,B⟩, or ⟨A,B,C⟩, but never
out-of-order permutations like ⟨A,C⟩ or ⟨B,A,C⟩.
Consistent Prefix provides write latencies, availability,
and read throughput comparable to that of eventual
consistency, but also provides the order guarantees that
suit the needs of scenarios where order is important.

Azure Cosmos DB Documentation on Consistent
Prefix [9]

Looking at the examples in the above excerpt, the docu-

Client 1 2 3 4 5

A

AA

B

BB

write A

write B

read B

read A

Servers

Fig. 2. Interaction diagram of a possible scenario for producing read pattern
⟨B,A⟩ under consistent prefix with a cluster of 5 servers.

mentation claimed that neither ⟨A,C⟩ nor ⟨B,A,C⟩ should
be observable by clients. We assume the scenario described
involves some implicit key k and values ⟨A,B,C⟩ written to key
k in sequence alongside 3 concurrent read operations, all under
consistent prefix. In that case, our specification of Cosmos DB
allows both sequences of reads that the documentation claims
are forbidden.

The first sequence, ⟨A,C⟩, is possible because the con-
current interleaving ⟨write(A), read(A), write(B),
write(C), read(C)⟩ should naturally be possible, even
if all operations were globally atomic. We are not sure why
this counter-example was claimed to be invalid.

The second sequence, ⟨B,A,C⟩, is a more complex case.
We have confirmed that read operations in Cosmos DB are load
balanced to potentially any replica, and that any replica will
immediately serve any data that is replicated to it. Following
the information from Table I, we know that consistent prefix
read operations will go to only one replica, and that consistent
prefix write operations will be considered successful once data
has been committed by a local majority of replicas in a single
region. Figure 2 illustrates a possible scenario with one client
and 5 replicas that will produce the read pattern ⟨B,A⟩ 3,
while following all known implementation-level semantics of
consistent prefix consistency.

First, assuming some arbitrary single key k , the client writes
values A and B to local majorities. There are 5 replicas, so 3
servers must commit each write. The first write goes to replicas
1, 2, 3, and the second write goes to replicas 1, 4, 5. Then, the
client performs two reads in quick succession. Due to arbitrary
load balancer behavior, the first read is served by replica 5,
and the second read is served by replica 2. Each replica serves
its latest local copy of the data bound to key k , which, due
to how local majorities were chosen during the earlier writes,
and assuming no replication has time to take place, produces
the sequence of reads ⟨B,A⟩.

Together, these two counter-examples negate the only doc-
umented difference between consistent prefix and eventual
consistency for atomic writes to the same key.

3We omit C from our example, as additionally writing then reading C after
seeing ⟨B,A⟩ is intuitive, strongly consistent behavior.



B. Regions Do Not Affect Safety Guarantees

Building on the idea that consistent prefix and eventual
consistency behaviors are identical, we arrive at a second
question regarding Cosmos DB’s public documentation: why
is data consistency so strongly dependent on how regions are
configured? To illustrate, Cosmos DB’s consistency documen-
tation [9] contains 13 bullet points across 3 sections indicating
consistency expectations that depend on the region in which
a client is interacting with Cosmos DB. 12 of those bullet
points list either consistent prefix or eventual consistency as
the expected behavior, which we found to be equivalent.

Given how many of these bullet points be argued redundant
according to our specification, we gave thought to whether
they could all be removed. Making the documentation simpler
in this way would be a net positive to potential readers who
seek to understand Cosmos DB’s consistency guarantees.

The 13th bullet point that lists a consistency level other than
eventual consistency or consistent prefix applies to bounded
staleness, when bounded staleness reads go to the same
region as writes. That bullet point claims that, under those
conditions, bounded staleness offers guarantees identical to
strong consistency. Given that both reads and writes under
bounded staleness perform region-local consensus, we can
understand why this case would often be equivalent to strong
consistency in practice: within the same region, it would be
impossible for a client to see any out-of-order artifacts. The
missing condition is durability: Cosmos DB supports write
region fail-over, whereby the write region can be changed if
the original write region has become unavailable. In that case,
the new write region might not have replicated all of the data in
the original write region, or might lag behind other regions that
are still available, allowing both data loss and stale reads. This
would not be the case for strong consistency, which requires
global consensus during writes, meaning that changing write
regions would not create any client-visible inconsistencies.

When our issues were addressed, it was confirmed that for
atomic single reads and writes, our arguments are valid. These
bullet points remain due to an additional detail that is out of
scope for our specification: transactions. Cosmos DB supports
optimistic concurrency via a transaction engine layered on top
of the raw reads and writes our specification supports, which
acts differently under consistent prefix and eventual consistency.
Formally specifying this new information, as we have done for
the original, may be an interesting direction for future work.

C. Investigating a High-Impact Production Outage

Our work was motivated by a production outage which
impacted the ability of thousands of Azure customers to deploy
or update their critical cloud resources for over a month4. The
outage was the result of a subtle and hard to detect consistency
bug introduced in an attempt to improve system performance,
and the full repair of this issue has necessitated a costly, multi-
year, redesign of the underlying system’s storage architecture.

4Documentation for this outage is not public, and we explain any necessary
context in-text. Its internal write-up is available here for those with access:
https://portal.microsofticm.com/imp/v3/incidents/postmortem/521677.

Client FrontDoor WorkerCosmosDB

request

error

write X

ok

not found

read X

do task X

error

Fig. 3. Interaction diagram of the error underlying a high-impact outage
within Azure Cloud.

The fact that this change was introduced by, and under the
guidance of, experts on this system highlights the challenges of
manually verifying the consistency models of large distributed
systems, and the risks associated with their failure.

We have used our work to model the semantics underlying
the outage. As a result, we have been able to identify the
previously-unidentified safety issue underlying the outage. We
presented our analysis to the author of the original outage post-
mortem, and they confirmed that our explanation made sense
within the context of their work. Note that our presentation
here summarizes the structure of a system that depends on
Cosmos DB. Cosmos DB itself should be understood to work
as it is presented in Section III, and additional components
are part of the surrounding system whose investigation we are
presenting.

1) Outage Postmortem and Investigation: Figure 3 illustrates
the underlying structure of the outage, as reported in the
postmortem. It is already clear that a data consistency issue is
occurring: the FrontDoor server makes a complete, successful
write to Cosmos DB, and then the Worker server tries to read
that write and fails. The reported explanation for this issue
was based on regions and latency. FrontDoor was performing
writes in one cloud region, and Worker was reading those
writes in another region. Prior to the change, these writes and
reads were occurring in the same region, and errors were not
happening at a noticeable rate. The change in routing lead to
a change in latency, which caused Worker to read out of date
information from Cosmos DB.

From our analysis, while the original postmortem’s com-
ments were correctly diagnosing the change in latency, some
correctness-critical factors were not discussed. We found that
Cosmos DB was configured for session consistency, and we
confirmed that each server (FrontDoor, Worker) was working
with unconfigured, arbitrary session tokens. From the definition
of session consistency, without sharing session tokens, the two
servers were only guaranteed eventually consistent reads. So,
the semantic problem had always existed, but it was only
exposed in practice by a change in region configuration.

2) Modeling the Outage: Our TLA+ specification allows
us to verify the abstract scenario from Figure 3, and check
our understanding against our specification of Cosmos DB. In
Listing 1, we define a collection of actions corresponding to two

https://portal.microsofticm.com/imp/v3/incidents/postmortem/521677


CosmosDB
∆
= INSTANCE CosmosDB

VARIABLES serviceBus, frontdoorPC , frontdoorToken,
workerPC , workerToken, workerValue

Init
∆
=

∧WriteConsistencyLevel = SessionConsistency
∧ serviceBus = ⟨⟩
∧ frontdoorPC = “frontdoorWriteTaskDataInit”
∧ frontdoorToken = NoSessionToken
∧ workerPC = “workerBeginTask”
∧ workerToken = NoSessionToken
∧ workerValue = NoValue
∧ CosmosDB !Init

frontdoorWriteTaskDataInit
∆
=

∧ frontdoorPC = “frontdoorWriteTaskDataInit”
∧ CosmosDB !WriteInit(“taskKey”, “taskValue”)
∧ frontdoorToken ′ = CosmosDB !WriteInitToken
∧ frontdoorPC ′ = “frontdoorWriteTaskDataCommit”
∧ UNCHANGED ⟨serviceBus, workerPC , workerToken,

workerValue⟩

frontdoorWriteTaskDataCommit
∆
=

∧ frontdoorPC = “frontdoorWriteTaskDataCommit”
∧ CosmosDB !WriteCanSucceed(frontdoorToken)
∧ serviceBus ′ = ⟨“taskKey”⟩
∧ frontdoorPC ′ = “Done”
∧ UNCHANGED ⟨frontdoorToken, workerPC ,

workerToken, workerValue⟩

frontdoorDone
∆
=

∧ frontdoorPC = “Done”
∧ UNCHANGED vars

workerBeginTask
∆
=

∧ workerPC = “workerBeginTask”
∧ serviceBus ̸= ⟨⟩
∧ LET taskKey

∆
= Head(serviceBus)

IN ∧ serviceBus ′ = Tail(serviceBus)
∧ ∃ read ∈ CosmosDB !SessionConsistencyRead(

workerToken, taskKey) :
∧ workerToken ′ =

CosmosDB !UpdateTokenFromRead(
workerToken, read)

∧ workerValue ′ = read .value
∧ workerPC ′ = “Done”
∧ UNCHANGED ⟨frontdoorToken,

frontdoorPC ⟩

workerDone
∆
=

∧ workerPC = “Done”
∧ UNCHANGED vars

Listing 1: A TLA+ specification of the behavior underlying
the events in Figure 3.

Client FrontDoor WorkerCosmosDB

request

write X

ok+tok 1

X+tok 2

read X+tok 1

do task X

...

+tok 1

+tok 0

Fig. 4. Amended interaction diagram showing a correction of the problem in
Figure 3.

processes that interact with Cosmos DB. We reference our core
Cosmos DB definitions using INSTANCE, and which brings
into scope our existing definitions with the prefix CosmosDB!.
We include the complete set of actions allowed for each client,
but omit boilerplate for presentation. Control flow constraints
use the variables ending in PC. The full text is available
under the name show521677simple.tla alongside our
core specification. There is an equivalent PlusCal version named
show521677simplePCal.tla.

Corresponding to Figure 3, the two processes in Listing
1 are called frontdoor and worker, which match 2 of
the 4 processes in the figure. The processes communicate
with each other using the shared state variable serviceBus.
Process-local variables are prefixed by the name of their owner.
Note that we omit the client shown in Figure 3 by starting
our specification at the point where frontdoor receives the
client request. The behavior of Cosmos DB is taken from our
existing definitions.

Cosmetic differences aside, the underlying series of actions
is the same as in Figure 3: the frontdoor writes some
value (here, X is "taskValue"). The write occurs in two
steps: one to begin the write, and one to await the write’s
success. Assuming the write succeeds, frontdoor writes
"taskKey" to serviceBus, requesting that the worker
perform some task named "taskKey" (X in the figure). To
perform the task, worker reads the task data from Cosmos
DB using session consistency with a null session token,
storing the value and updated session token that it receives in
workerValue and workerToken respectively.

3) Counter-Example: Based on the original issue’s data con-
sistency expectations, we can formulate an expected property
for our specification in temporal logic: ♢ workerValue =
"taskValue". That is, eventually the state variable
workerValue will hold the value "taskValue" written
by frontdoor. Model-checking our property generates a
counter-example. In that counter-example, readIndex and
commitIndex were both at 0, meaning no replication had
taken place, and that unconstrained session-consistency reads
could go to replicas that did not have our single write of
"taskValue". Using a small amount of PlusCal alongside
our specification of Cosmos DB, we were able to accurately
recreate the semantic issue underlying a high-impact outage.

Our proposed semantic fix is to pass a session token from



frontdoor to worker, and use it as a starting value for
workerToken instead of CosmosDB!NoSessionToken
when the worker reads from Cosmos DB. Making this change
and re-checking the model, we find that the error no longer
occurs. Figure 4 illustrates the modified behavior we expect,
with versioned +tok 0, 1 . . . annotations indicating the process
of passing along and keeping up to date a session token tok
between FrontDoor and Worker.

D. Notable Anomalies

By writing our specification, we found multiple anomalous
behaviors that we suspected to be specification bugs. However,
in each case it has been confirmed that these represent real
behaviors of which Cosmos DB is capable. These behaviors
are not explicitly mentioned in the documentation, and we dis-
covered them purely by model checking, manually examining
the semantics of our specification, and discussing our results
with author 2, a Cosmos DB expert.

1) Dirty Reads: Strongly consistent writes, which we expect
to be linearizable, are only linearizable in relation to strongly
consistent reads. Other read consistency levels allow dirty reads,
which do not follow linearizability. Since write operations are
not atomic, reads with a consistency level other than strong may
see incomplete writes, because they are able to see non-durable
writes in general.

Following a more implementation-focused analogy, session
and eventual consistency reads are only served by one replica
in a region. Each replica immediately begins serving writes it
receives without waiting for the writes to fully replicate, so if
a read request reaches a replica holding an unreplicated write,
then that read can witness an in-progress strongly consistent
write operation. A similar scenario is possible for bounded
staleness reads under strong consistency, where a write might
be replicated to one region but not a global majority; a bounded
staleness read can likewise be served by a region that stores
an in-progress strongly consistent write.

The non-atomicity of strongly consistent writes is counter-
intuitive and not well-known. Previous drafts of the spec-
ification we present did not include this feature, until we
described to author 2 that our formulation effectively assigned
concurrency barrier semantics to strong consistency writes,
which is incorrect. The resulting explanation of the true
guarantees offered by strong consistency writes inspired the
current version of our specification.

2) Durable Failed Writes: Clients may also read the values
written by failed writes. Our specification does not remove
or invalidate log entries when a client might observe a write
failure, because the write may still succeed after that point.
Cosmos DB will attempt to unconditionally complete a write
operation even if its notification does not reach the requesting
client, and all the client observes is a failed request.

While this anomaly is well known, it can be counter-
intuitive to developers. Future documentation may benefit from
discussing this possibility, as well as the particular trade-off
made by Cosmos DB.

3) Bounded Staleness Reads are Weaker Under Strongly
Consistent Writes: Because the guarantees underlying bounded
staleness are enforced at write time, performing a bounded
staleness read while Cosmos DB is configured for strongly
consistent writes does not actually guarantee the same set
of bounds as when bounded staleness writes are configured.
Under strong consistency, there is no bound on the number of
in-progress write requests. As a result, bounded staleness reads
are not subject to any bounds either, and will return either the
same result as a strongly consistent read, or a dirty read from
an in-progress strongly consistent write.

We do not expect this more obscure anomaly to cause
problems for developers in practice, but it is important to
keep note of it in documentation and future design discussions.

V. DISCUSSION

The results of our work specifying Cosmos DB shows that
a minimal, purely client-facing specification of a sufficiently
complex distributed system has many uses in practice. Our
specification effort enabled us to suggest several improvements
to Cosmos DB’s public-facing documentation, as well as to
precisely diagnose the root cause of a high-impact outage
within Azure Cloud.

Our outcome is a useful intersection between focusing
on implementation correctness and focusing on the purely
theoretical properties of an abstract kind of system. By keeping
our specification at the interface level, we were able to
successfully avoid the complexity of Cosmos DB’s low-level
implementation semantics, while still producing useful practical
insights into the behavior of the system we studied.

Our lack of interaction with Cosmos DB’s implementation
is a double-edged sword, in that it is possible that some
error in our specification has escaped the notice of those
reviewing it. If a similar specification were more integrated
with Cosmos DB’s development, techniques such as trace
validation [20] could be employed to perform automatic checks
that the implementation and specification match. While we
did not have the opportunity to go beyond manual review, this
limitation is not fundamental to the techniques we describe,
nor is it a fatal flaw in our specific situation. Our TLA+

specification is compact enough that isolating and fixing any
error is not difficult: our core specification is only 390 lines
long, including comments and whitespace. For example, once
we were informed dirty reads should be possible, it took us
only 2-3 days to rewrite our specification’s write semantics
from fully atomic to the current two-step version, then adapt
and re-verify any affected correctness conditions.

This is why we believe that, despite the lack of automated
linkage between our specification and Cosmos DB’s implemen-
tation, it is practical to keep the specification up to date in the
face of any significant design or implementation changes to
Cosmos DB. In fact, analysis of what effect a design change
would have on client-observable behavior would likely be
beneficial to the discussion of that design change. Additionally,
as we have initially explored in Section III-E3, TLA+ can be



used to explore refinement relationships between our client-
level specification and other internal implementation-level
specifications, such as those currently in use by the Cosmos
DB development team.

Outside of Cosmos DB’s documentation, our work can be
used to precisely model individual interactions with Cosmos
DB. Our work could particularly benefit systems that depend on
Cosmos DB’s semantics when specifying their own behavior,
which could previously not be modeled in great detail due to the
lack of a re-usable and precise specification of Cosmos DB’s
client-observable behavior. This is made possible by our focus
on specifying Cosmos DB’s interface, since implementation-
level specifications will often be too complex, or have a larger
state space than is viable for model checking, to easily be used
as components of other specifications.

VI. RELATED WORK

There exist multiple perspectives on studying the observable
behavior of distributed key-value stores: abstract formal rea-
soning, formal methods operating on both specifications and
implementations, and client-level testing tools.

Formally, database consistency properties have been well
studied in the abstract [21], [17]. In particular, [22]’s focus on
client-observable system states partially inspired our specifica-
tion strategy for Cosmos DB.

In formal methods, efforts are ongoing to specify and verify
the correctness of distributed system implementations. Verifying
that an implementation satisfies a given specification can be
a powerful tool, but it often requires that the implementation
has a specific structure, often requiring verification to be part
of the development process from the beginning [6], [7], or at
least deeply integrated into the development process [8]. The
adoption cost of such techniques may prove prohibitive for
existing large, unverified codebases.

Tools to explore possible behaviors of an unmodified
implementation have been successfully developed [23], [24],
but these tools focus on exposing implementation bugs rather
than studying the set of valid client-observable behaviors.

Client-level testing tools also exist [25], [26], but this work
focuses on more general-purpose anomalies, or relies on user-
provided definitions for dependencies like databases. Database
semantics, especially quirks of a specific implementation, are
hard to define and reason about. Mock implementations and
simulation modes for complex database services cannot be built
as an afterthought. Our work provides a well-reasoned starting
point for building any client-level testing tools specialized to
Cosmos DB and its anomalies.

MonkeyDB [27] provides a general-purpose definition of
database consistency semantics, which it uses to simulate client
code interactions with databases. We believe our approach is
complementary to this kind of more general-purpose simulator,
in that our implementation-specific specification offers a
different set of semantics to simulate, potentially including
quirks that are unique to Cosmos DB.

Elle [28] automatically validates database consistency guar-
antees by analyzing the outcomes of synthetic query sequences.

It may be useful in both exploring the actual semantics of a
black-box database implementation, and in data consistency
bug-finding.

VII. CONCLUSION

We have presented what can best be described as the lightest-
weight useful specification of Azure Cosmos DB’s semantics in
TLA+. Despite its structural simplicity, our specification covers
all 5 advertised data consistency levels available to clients. It
represents behaviors with arbitrary configurations of regions
and replicas, including arbitrarily complex scenarios involving
delayed replication, server and region failure, and otherwise
data loss.

Our new specification has been validated by a combination
of model checking, refinement with existing incomplete speci-
fications, and expert review. While we are now confident in
our specification’s correctness, should any bugs be found in it,
our specification is also small enough that fixing them would
not require inordinate amounts of work.

We have used our specification to predict multiple under-
documented anomalous behaviors of Cosmos DB, and to
raise two now-addressed issues with the service’s publicly-
available documentation. We have also used our specification
to elaborate on the root cause of a high-impact outage within
Azure Cloud, successfully producing an abstract explanation
for the underlying series of events.

In the future, we expect our specification to be be usable
by the Cosmos DB development team to reason about their
service’s client-facing behavior, in conjunction with their
own implementation-level TLA+ specifications via refinement.
Beyond benefits to Cosmos DB specifically, our compact
specification can also be used to specify systems dependent
on Cosmos DB, growing the set of systems for which formal
verification is viable.

Our results show the value of using formal verification
in industry, even without any interaction with the target
system’s implementation at all. The benefits in terms of
understanding and documenting a system’s expected behavior
are still significant for end-users and developers.
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