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Abstract

Incident reports describe what happened when a system’s performance
was degraded, or when it stopped working entirely. They document the
measurements made, the changes applied in order to rectify the problem,
and the contributing factors identified. What they don’t do is help us
think beyond those facts. Human reasoning capability is limited, and site
reliability engineers can benefit from automated reasoning technology just
as much as system developers.

We propose that modeling techniques, which are normally used during
system design to predict and avoid incidents, are just as valuable after the
fact. Modeling allows site reliability engineers to go beyond a prose-and-
figures incident reports and produce precise, interactive and analyzable
models of incidents. We back up these claims by demonstrating our
analysis of a 28-day outage at Microsoft and show the added clarity gained
by building a model of what happened. All of the models used in our
demonstration are released as open-source.

1 Proposed Workflow

We propose an extension to the traditional incident workflow that incorporates
modeling the behaviors involved via a specification language designed for use
with concurrent and distributed systems. In many cases, this can lead to greater
understanding of the factors that contributed to the incident, as well as providing
a mechanism to explore the effectiveness of proposed strategies for preventing
similar incidents from occurring in the future.
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Figure 1: Proposed Additions to Incident Report Workflow
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In Figure 1, we visualize how our contributions add to the existing state of
the art. Considering an incident that has already been mitigated, the engineers
who responded to the incident will already have collected a large amount of infor-
mation regarding what happened and what was done. This is the “conventional
outcome”, in which case all insight will be described using prose and diagrams.
The problem with prose is that it can be hard to interpret after the fact, and
it can hide subtle logical and factual inconsistencies. To make things more
precise, once the facts are established, engineers should also produce a machine-
analyzable model representing the systems involved and the configuration that
lead to the incident scenario.

Thinking more broadly, if an incident report contains a machine-analyzable
representation of what happened and why, its value increases significantly. Be-
yond recording the facts and the ideas of those involved, such a report can
be used to predict future incidents and analyze potential after-effects of the
incident’s mitigation. Many events observed in large-scale production environ-
ments may not be reproducible under test. Even using chaos engineering [1],
only less-common behaviors can be explored with some probability, as opposed
to exploring an exhaustive list of possible events. Tools do exist that help
developers reason about unusual behaviors their code might exhibit [2, 4], but
they have to stochastically sample a subset of possible implementation-level
events rather than produce a comprehensive summary. As a result, a light-weight
machine-analyzable representation of all of a system’s allowable behaviors is an
important asset when reasoning about production incidents.

Note that while we use TLA+ (modeling language based on the Temporal
Logic of Actions) [13] and TLC (model checker) [16], the principles we discuss
apply to any reasoning tool with similar capabilities. For example, the Alloy [11],
Promela [8], and P [5] modeling languages cover a related design space.

2 Motivating Incident

Our motivating incident is a 28-day outage at Microsoft Azure. The outage
involved two system-specific communicating services: a work dispatcher and
one or more workers that perform some unspecified task. The outage also
involved two core Azure services: Azure Service Bus and Azure Cosmos DB.
Azure Service Bus provides a First-In-First-Out queue with which services may
communicate, and Cosmos DB is a distributed key-value store that can store
arbitrary application data.

Figure 2 illustrates the key elements of the problem scenario as it was
originally presented in an incident report. For each request serviced by the
work dispatcher, it would (1) write some metadata to Cosmos DB, and then
it would (2) enqueue the ID of the metadata it just wrote and a request to do
work onto the Azure Service Bus. At the receiving end of the service bus, some
worker service would (3) dequeue the work request including the ID of relevant
metadata. The worker would then (4) look up that metadata in Cosmos DB and
fail to find it. Item (4) is the only anomalous step: the intended scenario is that
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Figure 2: Flowchart visualization of our motivating problem scenario.

the worker successfully reads the metadata it needs and gets to work. Note that
a majority of requests did not fail in this way – rather, a specific type of request
was disproportionately affected, such that global error rates did not reveal the
outage despite a specific group of users being impacted.

The original incident report identified the problem scenario above and in-
cluded measurements indicating that a reduction in latency between (1) and (3)
was the main contributing factor leading to the outage. The resolution, therefore,
was to revert a set of performance improvements that reduced that latency.

The outcome was satisfactory in that the customers that experienced the
outage were no longer measurably affected, but at the design level the insight
was unsatisfactory. While a careful reader might intuit that there was some data
consistency problem, the incident report lacked key details needed to understand
the issue in depth. Without a clear picture of what was going wrong or how to
fix it beyond leaving the existing feature revert in place, the only way forward
became launching a multi-year redesign of the entire service. Including a model
of the incident alongside the original report would have allowed developers to
build a clearer picture of the issue, as well as evaluate the correctness of smaller
and more targeted design changes that might also have addressed the underlying
issue. Compared to what actually happened, we believe our modeling techniques
would have saved significant time and effort.

In the following sections, we describe our experience building such a model
for this incident. We also identify a design-level change that could fundamen-
tally prevent the outage from re-occurring, even with the previously-reverted
performance improvements.
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3 Deciding What to Model

When representing an incident, the goal is not to model everything, or to represent
what is modeled completely. Rather, the goal is to identify and represent the set
of factors that contributed to the incident happening, such that the resulting
model provides a useful abstraction over the problem domain. In this example,
we focus on modeling Cosmos DB’s consistency guarantees and the interactions
with the system which experienced the incident. It might be possible to broaden
the inquiry, like addressing the many other reasons a system might end up in a
state where workers are unable to read data for dequeued jobs, but generality
is not always better. An over-general model can be harder to understand, and
it may be harder to see that the model does not represent reality. This is
similar to general-purpose strategies like a reprocessing mechanism that retries
on failure. They can make a system more robust, but might also cause outages
by unexpectedly interfering with system load [9]. With modeling, we think it is
more reliable to start with specific concerns like the one we address here, and
build up the insight needed to think about more general issues over time.

For our motivating incident, we chose to represent the situation as we
summarized it in Figure 2. We modeled one work dispatcher, one worker, a
message queue, and an instance of Cosmos DB. There is no need to model the
system end-to-end, since the incident report already indicates which parts of
the system would be interesting to model We don’t need to model what the
work is, how the expected network communication happens, or any particular
details of where the dispatcher gets its instructions. If the worker can gather
the necessary metadata, then the issue has not occurred, and further events are
not of interest. Similarly, all signs indicate that the message queue was working
as designed: work was successfully enqueued at one end and then dequeued at
the other. Without further evidence of it doing anything controversial, we chose
to model it as simply as we could.

Cosmos DB, on the other hand, was the service whose behavior was directly
involved in the problem outputs. That is not to say that it had a bug – it
was in fact behaving as designed. This issue is an example of a cross-system
interaction [15], and the underlying issue could be categorized similarly to a
grey failure [10]. The fact that it was behaving in a way that was not fully
explained meant that we needed to model its behavior in more detail, because an
over-simplified representation of its expected behavior would simply not exhibit
the issue. On the other hand, an overly detailed model would just complicate
the incident model without increasing its usefulness.

With sufficient care, small ad-hoc abstractions can be used to summarize the
relevant behaviors of target systems, which can be much easier to build than
a complete model. That said, the ideal scenario is that the vendors of a given
system would already provide a ready-to-use model of its expected behavior. A
generic model authored by a system’s developer team could be better trusted
to represent real system behaviors, reducing the need for ad-hoc modeling of
a given system. Of course, the usefulness and trustworthiness of any model
will always be relative; we are talking about a matter of practical utility and
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Consistency Level Effect on Client View
Strong Consistency Global order; clients always see latest versions
Bounded Staleness Old values visible for limited (bounded) time
Session Consistency Order only between clients with shared token
Consistent Prefix Generally similar to Eventual Consistency
Eventual Consistency Old values should eventually stop showing up

Table 1: Summary of data consistency levels supported by Azure Cosmos DB

reducing manual effort. Optimistically, the growing use of formal methods in
practical system development [3, 6, 12, 14] points toward this concept becoming
more realistic over time.

By using a generic model of Cosmos DB’s behavior that we had previously
built [7], and having sufficiently simplified our representation of all the other
necessary components, it took us about 1 person day to recreate the interaction
shown in Figure 2.

4 Need-to-know About Azure Cosmos DB

This section covers details of Cosmos DB’s design that are necessary to understand
our model. Cosmos DB is a distributed service that replicates stored data across
multiple servers and geographical regions in order to withstand incidents like
machine failure, network failure, datacenter failure, and so forth. Since clients
may connect to any Cosmos DB server at any time, servers must maintain
consensus regarding which version of a given value a client should be shown.

Cosmos DB supports 5 configurable “levels” of consistency. Table 1 provides
a summary of how each level works. Generally speaking, the higher up the table,
the less efficient and more predictable the behavior. The top of the table provides
a globally consistent view of the stored data, but it is considered a heavy-weight
setting. Similarly, the lower down the table, the better the performance and the
less predictable the behavior. The bottom of the table provides no guarantees
other than clients eventually seeing more recently-written data.

Of interest to our model is “session consistency”, which is a recommended
default setting. This setting operates via tokens, which are opaque identifiers that
indicate a “session”. This was the mode used in the incident scenario. Clients
may share tokens and connect to Cosmos DB while identifying themselves using
a shared token. If a client connects without a token, it will be issued an arbitrary
one. Session consistency has two possible behaviors: if two clients identify
themselves with the same token, then they will see each other’s written data
as if operating under strong consistency. If two clients do not have the same
token, then no guarantees are offered and they will see each other’s behavior
as if operating under eventual consistency. In the incident in question, this
detail was fundamental to the bug observed: due to incorrect token handling,
the system saw eventual consistency guarantees rather than the expected strong
consistency-like guarantees.
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5 Model and Counter-Example

Listing 1 contains the majority of the model definitions needed to reproduce
our motivating incident, with some boilerplate omitted for presentation. It is
written using the imperative PlusCal syntax for TLA+, which can be more
intuitive to read for those used to popular programming languages. To ex-
plore the model yourself, check it out from Github at https://github.com/

tlaplus/azure-cosmos-tla/tree/master/simple-model. All necessary data
and configuration are provided; opening the folder with the TLA+ Visual Stu-
dio Code plugin (https://github.com/tlaplus/vscode-tlaplus) and select-
ing the TLA+: Check Model With TLC option is sufficient to view the counter-
example we include in this article.

This model has two explicit processes, the dispatcher and the worker, and
one implicit one, the Cosmos DB service.

The two explicit processes are defined by process definitions, which each
define a process that operates asynchronously to other processes by taking a
sequence of atomic steps. Each atomic step is labeled, which shares a syntax
with the low-level control flow construct of the same name. For example,
dispatcherWriteTaskDataInit: is the first label of the dispatcher process.
Sometimes, a step must wait for a condition to be true before being able to run.
In that case, the await statement is used to ensure that the current step cannot
execute until the relevant condition, such as serviceBus # <<>> (which reads
“the service bus is not empty”), is true.

The Cosmos DB service is defined separately as a re-usable module, and its
operations are referenced with the prefix CosmosDB!. WriteInit(key, value),
WriteInitToken, and WriteCanSucceed(token) operate in combination, start-
ing and completing a write operation to Cosmos DB. The first two operations
begin a write and extract its identifier, WriteInitToken. The third is a predicate
that is only satisfied if the write has succeeded (if the write fails, it will never be
satisfied). SessionConsistencyRead(token, key) yields the set of values that
may be read in the current system state given token and key. Depending on
possible valid Cosmos DB internal states at any given time, the set may be empty
or may contain multiple possible values. UpdateTokenFromRead(token, read)

combines an existing session token with a chosen result of a read operation to
produce a new, updated session token.

Note that the conspicuously absent service bus has been simplified to the
extent that it is not represented as a process at all: its state is summarized by
the global variable serviceBus, which is a plain TLA+ sequence. It starts as
an empty sequence, which has the syntax <<>>. Sending to and receiving from
the service bus is performed inline by the dispatcher and worker.

Overall, the model operates exactly as Figure 2 shows, albeit without any
assumption that step (4) will fail. Instead, the worker reads from the database and
records the outcome in the local state variables workerToken and workerValue.
While these state variables are not functionally necessary, they can be used to
examine the model’s behavior: we can write properties describing how their
values should change over time, and we can model check whether these properties
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variables serviceBus = <<>>; \* defined as empty sequence

\* dispatcher process

process (dispatcher = "dispatcher")

variables dispatcherToken;

{

dispatcherWriteTaskDataInit:

\* begin writing taskKey := taskValue to Cosmos DB

await CosmosDB!WriteInit("taskKey", "taskValue");

dispatcherToken := CosmosDB!WriteInitToken;

dispatcherWriteTaskDataCommit:

\* proceed once write is complete (e.g. wait for ack)

await CosmosDB!WriteCanSucceed(dispatcherToken);

serviceBus := <<"taskKey">>;

}

\* worker process

process (worker = "worker")

variables workerToken, workerValue;

{

workerBeginTask:

await serviceBus # <<>>; \* read service bus

with(taskKey = Head(serviceBus),

\* read value from Cosmos DB with no session token

read \in CosmosDB!SessionConsistencyRead(

CosmosDB!NoSessionToken, taskKey)) {

serviceBus := Tail(serviceBus);

\* store resulting token and value for analysis

workerToken :=

CosmosDB!UpdateTokenFromRead(

CosmosDB!NoSessionToken, read);

workerValue := read.value;

}

}

\* standard Cosmos DB setup boilerplate omitted...

Listing 1: TLA+ model of all relevant conditions leading up to the incident.
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are universally true.
For our purposes, we want to assert that <>workerValue = "taskValue",

or, “eventually workerValue will have the value "taskValue"”. That is, the
worker will always read the intended value and not the “404” placeholder. If the
property is always true, then the incident we are trying to model cannot happen.
Replicating the incident, model-checking shows that the property does not hold
for the system as modeled.

1: <Initial predicate>

/\ readIndex = 0

/\ log = <<>>

/\ workerValue = defaultInitValue

/\ pc = [dispatcher |-> "dispatcherWriteTaskDataInit",

worker |-> "workerBeginTask"]

/\ serviceBus = <<>>

/\ commitIndex = 0

/\ dispatcherToken = defaultInitValue

/\ workerToken = defaultInitValue

2: dispatcherWriteTaskDataInit

/\ log = <<[value |-> "taskValue", key |-> "taskKey"]>>

/\ pc = [dispatcher |-> "dispatcherWriteTaskDataCommit",

worker |-> "workerBeginTask"]

/\ dispatcherToken = [epoch |-> 1, checkpoint |-> 1]

3: cosmos

/\ commitIndex = 1

4: dispatcherWriteTaskDataCommit

/\ pc = [dispatcher |-> "Done",

worker |-> "workerBeginTask"]

/\ serviceBus = <<"taskKey">>

5: workerBeginTask

/\ workerValue = "404"

/\ pc = [dispatcher |-> "Done", worker |-> "Done"]

/\ serviceBus = <<>>

/\ workerToken = [epoch |-> 1, checkpoint |-> 0]

Listing 2: Counter-example generated by model-checking the model in Listing 1.

Listing 2 summarizes a counter-example scenario, edited for presentation
but illustrative of the ASCII output when TLC finds a counter-example. The
counter-example is a chronological series of events expressed as assignments
to model state variables. Some of the variables are the same as in Listing 1,
while others are defined separately. The Cosmos DB internals are summarized
by readIndex, commitIndex, epoch, and log, which can completely represent
any client-observable state Cosmos DB might reach. The pc variable stands for
Program Counter, and is a proxy for control flow within the model. For the
dispatcher and worker, it indicates which action each process should attempt
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next, corresponding directly to the labels Listing 1.
Paraphrased from the tool read-out, the counter-example reads as follows:

dispatcherWriteTaskDataInit Begin writing the key-value pair "taskKey",
"taskValue". This adds the data to the database, but does not require
any consensus-type actions.

Cosmos DB Some partial consensus action. A majority, but not all, Cosmos
DB servers will have the new value. This is indicated by commitIndex

advancing to point to index 1 of the log, while readIndex stays at 0.

dispatcherWriteTaskDataCommit The write process is considered complete.
The dispatcher sends "taskKey" via the service bus.

workerBeginTask The worker receives "taskKey" via the service bus, and
reads that key from Cosmos DB. It stores the value it read in workerValue,
which is "NoValue".

The counter-example makes clear a logical problem with how the worker and
dispatcher behave. Speaking intuitively, because Cosmos DB is operating in
session consistency mode, if they do not share a session token then the clients are
opting out of any consistency between reads and writes. It is entirely possible
that the worker accesses a Cosmos DB server that has not yet received the
value written by the dispatcher, and without a session token that server will
just respond with the information it has on hand: "taskKey" does not refer
to a value. With an up to date session token, the server would see evidence
encoded into the token itself that its state is stale, and it would have to wait
before responding.

To further demonstrate that the lack of forwarding session tokens caused the
read failures, editing the dispatcher and worker as shown in Listing 3 to send a
session token via the service bus changes the model checking outcome. If the
two processes share a session token, then the model checker can no longer find
any counter-examples to the property <>workerValue = "taskValue".

Looking at this explanation, it also becomes clear why the issue could
not be found using conventional testing, nor could it easily be reproduced
at the implementation level. The issue was of similar complexity to a grey
failure [10], being rare and load-dependent, meaning that any implementation-
level reproduction would have to reliably recreate those complex and difficult
to control factors. That is why incident reports are usually prose and figures,
because without an alternative strategy like modeling, it is simply impractical
to do anything else. With the addition of high-level modeling however, creating
a demo of this kind of rare issue becomes possible.

6 Take-Aways

Combined with the original incident report, this model made it possible to clearly
explain the design-level problem. It also helped validate the correctness of a
proposed fix that could fundamentally prevent the issue going forward.
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dispatcherWriteTaskDataCommit:

\* proceed once write is complete (e.g. wait for ack)

await CosmosDB!WriteCanSucceed(dispatcherToken);

- serviceBus := <<"taskKey">>;

+ serviceBus := <<[taskKey |-> "taskKey",

+ token |-> dispatcherToken]>>;

}

***************

await serviceBus # <<>>; \* read service bus

- with(taskKey = Head(serviceBus),

+ with(msg = Head(serviceBus),

\* read value from Cosmos DB with no session token

read \in CosmosDB!SessionConsistencyRead(

- CosmosDB!NoSessionToken, taskKey)) {

+ msg.token, msg.taskKey)) {

serviceBus := Tail(serviceBus);

\* store resulting token and value for analysis

workerToken :=

CosmosDB!UpdateTokenFromRead(

- CosmosDB!NoSessionToken, read);

+ msg.token, read);

workerValue := read.value;

Listing 3: Changes to Listing 1 needed to address the underlying design issue.
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The key benefit of this style of modeling to incident reports is the ability
to consider all possible systems states in aggregate. The model we developed
does not only represent the error scenario: it shows how the error is possible,
while also representing many situations where the error could coincidentally not
happen. That is, checking the property []workerValue # "taskValue", that
workerValue will never have "taskValue", will also yield counter-examples.
Cosmos DB is also allowed to propagate "taskValue" to the worker correctly;
it just isn’t required to under session consistency with no shared tokens.

As a result, the style of model for which we are advocating is strictly more
expressive than devices for illustrating one or a small set of possible events.
Figure 2 on its own, for example, is incomplete. A model like the one we show
can be used to summarize millions of possible events in relatively little text,
while allowing humans to query all of those possibilities in aggregate during
design discussions.

Anecdotally, when we validated our work with the owner of the incident
report we were using, they were pleasantly surprised that we could demonstrate
the issue so cleanly. They were not surprised what the issue was, however. It is
often the case that modeling does not expose strictly new information. Rather,
it makes clear which suspicions developers and operators already have might
actually be the case, converting abstract hypotheses into practical demos.

In summary, we have presented an extension to the conventional incident
report workflow: formal modeling. We were able to derive greater insight into
a complex high-impact incident, and were able to suggest a fundamental fix to
the underlying bug. Our method is light-weight, and, with the right training in
modeling and pre-existing tooling, can be followed in about 1 person day of effort.
We hope to inspire adoption of this method as part of incident report writing
at Microsoft and beyond. This hope is in part based on successful adoption of
both TLA+ specifically and other automated reasoning tools in industry. While
incident reports can often be seen as special cases or single examples for which
automated reasoning is unnecessary, the complexity and subtlety of cross-system
or grey failures at scale merits more automated, systematic analysis.

To learn more about the tools we used, you can visit http://tlapl.us. To
examine the model we developed, it is open-source at https://github.com/

tlaplus/azure-cosmos-tla/tree/master/simple-model.
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